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NASA TT F-9371

CONTROL EFFECTS ON THE ELASTIC BLADES OF A HELICOPTER ROTOR *iC_!_q_

Al._arinescu

The problem of forced vibrations of the blade of a heli-

copter rotor is investigated, where the perturbation

forces are due to the effect of the con;rol (at a varia-

tion with time of the collective cetting angle, respect-

ively of the amplitude of cyclic variation). The effect

of the control during abrupt changes as well as the s_une

effect during gradual oblique changes in command are

taken into consideration, it is emphasize_d that an inte-

gration of the equations of motion of the blade is neces-

sary, by means of a Laplace transformation; the conditions

required for attenuation or complete disappearance of these

vibrations are given. /j/_ff.__6/V_-
Notations

OXYZ - Fixed _ystem of axes (XOY-plane coinciding with the control

plane )

Oryz = System of rotary axes (Or-axis coinciding with the position

of the rigid blade)

R - Radius of the rotor

tv - Chord of the blade

. r = Distance of a given section of the rotor axis

5_

3_

5._ * Numbers in the margin indicate pagination in the original foreign text°
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_u = Generalized coordinate

z = Deviation of th_ testea blade from the position of the rigid

blade

= Angular velocity of the rotor

ab = Angular velocity before control

A_ = V2-_iation in angular velocity

vn = Natural freruency of the rotary blade

w = Induced velocity

we = Induced velocity before control

_w = Variation of the induced velocity

M_ = Generalized mass of the blade

e --Angle of attack of the blades

eo = Angle of attack before contro_

Ae = Variation of the angle of attack

_: = Induced angle

= Flapping angle of the blades

C" = Slope of the curves referring to the blade profile

_(r) = _ction of modal form

p = Atmospheric density

p = Complex quantity

h(t) = Object function
@o

g(P) = P _o e'Pth(t_t

Studies on the vibrations suffered by a blade at a collective angle of

&ttack, on the amplitude of cyclic variation and constant angular velocity,

nave sho_m that the perturbation forces can, in the general case, be expressed

in the fozm of a Fourier series.
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in the case of a collective angle of attack, the amplitude of cyclic vari-

ation and the angular velocity become a function of time, and it might happen,
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at the instant at which a command is given, that high perturbation forces _re

generated which exert their effect on the elastic blades, a point which is the
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object of our studies.

With respect to the collective angle of attack and t_e amplitude of cyclic

variation, we have considered two of the many types of variations with time as

t_ey occur 5tipractice, namely, Lhe variation during sudden application of

control (Fig.1) and the variation during gradual oblique application (Fig.2 ).

Since the helicopter command for the collective setting angle is coupled

with the gas pedal for the engine, it can be assumed that, because of these

two types of time variation, the angular velocity of the rotor changes slightly

during sudden application of control (Fig.3) or completely during gradual appli-

cation.

In these diagrams, the evolution of the deflection is shown, taking into

consideration the case of deflection without asymmetry of the blade velocity

(vertical deflection or fixed point). This is known as the "in situ" command.

It is of interest to se_ here that, under thes_ conditions, the de- l_

formation of the elastic olade due to the control effect, together with other

types of transitory d_aaamicresponse of the blade, are attenuated, which is of

practical value in the flying of helicopters.

I. EFFECTS DURING SUDD_ APPLICATION OF CONTROL

a. Effect of Control on the Collective An_le of Attack

Let us adopt the hypothesis of uniform induced velocity in the mentloned

evolution and, for the tSJnebeing, let us assume average constant values in the

calculation, so that with respect to one blade clement the aistance r can be

generally written as

4P = _t_(_r)_'6",.(O-- _,),Ir = -_- t.((ur)2C'_(O - '--_r)dr. _2 (1)
)
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The effect of control manifests itself here by a rise in angular velocity,

and the azlgleof attack becomes a function of tiz.e°

T!rough the variation _u time, the boundaries near the blade influenced

by the control give rise to the generation or displacement of vibrations wb&ch

incite deflections

which represents a criterion for the position of the rigid blade, which posi-

tion can be determine_Jfrom the aerodynamic data of the rotor (Fig.5).

£

0 X

Fig.5

In accordance with the data given in another report (Bibl.2), the equation

of motion of the blade has the form

_,, +a_,, +b _ = AFop, (3)
in which

p

0

i M. + r.p"_R
_. 4 . o t;" ¢,.

(r}dr

t6 _'+T.o"
,17

,m A =_ 1

50

51'
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Owing to the effects of control it is obvious that then the coefficient a ___Q7_66

and b o£ eq.(3) become ftmctJ.onsof time and that, in this sense, we can put

-- _o -t- A(_

and, again, the natural frequency of the rotating blade will be

2

_. =v_+kl_2=_o4 kl(O:o+A_o) 2=(_+k l_)+2k Iv oA_+klAo; _,

With e = Oo + _e, eq.(3) becomes

or

+ _,o_,.(t-=} = _o+ _,(t-_). (5)

Let us apply to eq.(5) the Laplace transformat'.on, together-with the limit

conditions

L (o) = o,
C (o) = o,

Without diminishing the generality, we will then have

L_ = .X,

L% _. := % X,

I,%_,,--=:_opX,
L_,_ =/.,2 X,

L_xo _. (_--':) -= alo c-_ L_,, = uloe-_'pX ,

l.c_o_ (_',-_)= cxoe-_ .X,
I,'2o _. Ct-_) = c2oe-_" X,

L_o= 13_,
I43xCt-'_'_= _ioe-_'.

Since p is a complex quantity and since the exponential function can be

expanded in a _eries with infinite convergence domain, we have

p:: -2 i
c-P' = 1 --p'_+ ' +...

Z (6)

e ;,[_
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Summing the first two terms of this expansion and making the necessary

calculations, eq.(5) becomes

X[ f+ _o + _o- _qo-_2o ¢o+ _o + *2o]
1 _1o: _P + jL -- i --ato x j

% + _,o _o_ (7)
1 -- _1o"r 1 -- ¢:'1o_"

where /1077

=pO,oIRt,-r _. (r)dr
.0,

M. + t_ ([,, (r)dr
.

t"OAm o tpr(1).(r)dr
0

M. + Lf_\ t_ (I,. (r)O.r
.0

M. (_o+ k; _)

7;_ f ll
' t2,,_. (r)d.r

.M'.+T.o
2 M. kI _oA_.

¢1o= =Oi"t_ _. (r) dr 'M'+T. °
3r./q Ao_o

¢2o= no _'at_(b,,(r) dr '

f" P f"C,-_'P o_ 0o o_,, (r) t_ r: dr -- C_ _- o_o w o ,% (r) t. r (lr
_o= r,p "" '

,tO

(1).(r)t.r_dr-- C'_ _-_.-A_ow (1)dr)t,r4r

._to= 2 * . ," 2 ..,o '

4 .)o

Ho = 2tOo0o A_o + Aco_0o + (o_,A0o + 200 A_o a0o + A_o_ A0,.

Us._mgthe notations,

|,

D}

',(' C_ = _o 4- rio + Czo,

7
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1 _ _'10 T

E = _0 T ,

we obtain from eq.(7) I --_x0• i1078

x . 9 j::p . (8)
p2 Bp _t_C2 p2 + 2 Bp + C2

Making ar _nvers_.transformation will 5ield the solution of eq.(5):

_ = -._ 1 VC2_ B_______e- _' sin ( l"C_ -- B' t +¢ --
(9)

E e-"t sin VC_-- B2 t

for C2 > B 2 and

D 1c, /°-^'_ '_-__"_ __ f_-^,, o-A,, (lo)

for C_ < B_.

2 J"-'A _J'

Fig.6

In this expression

B

A_ and A_ are again roots of the _uation p_ + 2Bp + C_ = O;

In the case of combining the lin_itconditions in t_" _'_ _:general form of

_. (0) = _o,
_.(o)= o

and, combining the variation of the in,'_cedvelocity as shown in Fig.6, we

will have
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L _oC.=_oX,

L _-_o"..'_ (t---) = _1oe-_ 1. _,,= _loe-: _X -- _loe-:p_,

L :1o _. (t ---:) = _1oe-_ X,

L _2o_ (t -- "r)= % e-_ X,
L [3o = 13o,

where

¢_ _o 0o (r) t. : 4r - ¢_y O_oWo ¢. (r) t, r dr

•_I.+ T tIO.(r)_r

/1079
H 0 0 C'_ O,(r)t, r4ro-_-C'_ O.(r) tpr2dr-- Uo_2-.0 .0

"_._ i 1¢ _,

.31. + 4:0 t_ O.(r) dr

Uo = o_o AWo+ WoAcoo+ A_o Awo.

With our conditions,eq.(5) then becomes

X[,' _ _° + _'° - c'°': --'_:°'_ 'o + _o + _2o]
p+ =

1 --_lo_ 1 --_1o
. (ii)

_ _o+_o + _o_o-)_o_+_xo' _;+ _p_

from where, taking account of the notations from the preceding case, we will

obtain D Fp _.oP_X-- + + |

P: "i-2 Bp + C_ P_ + 2 BP �C_P_ + 2Bp + C_ (12)
.t

_- _¢here

'_" I" = _o _o --_o "_+ _ "_.

¢' Solutionof eq.(9) will thus be completedwith the inversetransformation

47 p_
m of which will yield the expression
_'_ p_ + _Bp + C_
_ C

e -_'sin(l _C' -- B' t--C) (13)",, [/C_ " B_

9
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if Ce > B_, and

1 (A_(,_A,' _ A2c A. j (Ih)
A 1 -- A:

if C_ < B_.

further exa_inatJ.onof the solution for both cases of !.he!_m_t.condi-

tions, it wil± be found that the quantity C_, independent of t_me, becomes

very small as soon as the Q_antities B and C become very large.

This reduces to the statement that the condition of vibration caused by

the control effect is greably attenuated as soon as the quantity _zo beco,,es

i
of the order of --.

In this manner_ it can be readily demonstrated that a connection exists

between the blade parameters and the response time of the engine, such that the

initiation of commands does nob cause forc_i viorations of the blade.

b. Effect of Cyclic Variation on the Angle of Attack

In this case, the angular velocity remains constant (m = Ub = const) and

only the angle of attack undergoes a cyclic variation so that, taking this into

consideration in the usual manner, this angle can be considered as having the

form of _0 sin wt.

Let us neglect the transitory phase and, consequently, also the induced

angle of flapping motion and, at the same time, take into consideration

0 = 0o + AOsin (or, (15)

where AO follows from the abrupt discontinuity in the slope of the curve in

Fig.l, so that the differential equation of motion of the blade will be

(16)

10
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The coefficients a and b in t_e above equation are expressed here as well

as in eq°(3) but only if we assume here that • = ab = const.

Thus, the predicted quantities 8-oand _(t) can be expressed as follows:

_, fR ( W
.2__c"o 0o ./dr
2 ,o k _o r ]

3[. + "-_ _ t_ ¢. (r) dr

P _o A0o (r) tp r_-drc:y
_h(¢) -= sin _t -= Ko sin cot.

+11.--', 4 Jo 1__" (r) dr

Let us apply the Laplace transformation of eq.(16), together with the

limit conditions

_. (o) = _o,

_. (o1= o,

which will yield

L 4.=P'X--p2_o,
L __,_=pX--p_o.

In order to preserve the notations of the peeceding case, let us put a =

= 2[3and b = C2,

Then, eq.(16) becomes

p'X --p' _o + 2 Bp X --2 Bp _o+ C'X = _o+ Ko P _

from which it follows that

p2 -1- 2B_o P
.'_ X = _o p2___ 2Bp + C_ ' .p2 + 2Bp-k C2 +

I

. + _o + go _ P . (17)
,: p2 + 2Bp + C2 (p_ + a,2) (p' + 2Bp + C')

P)

! 50 Because of the fact that the first three terms have been inversely trans-
51

5_' formed, it is relatively easy to make use of Tables. Thus, it is possible to

ll
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control the terms if we write the expression in the following manner_

Ko _ p: 1
p _ p2 + ¢_2 pZ+ 2Bp Jr- C l

K o (o (p2 + _2) (.r_. + 2Bp "7 C2) -- P "

Let us apply _._eBorel theorem, arranged so that

g_ (p) = L h, (t),

g2 (P) = L h2 (t),

s_-uulta_eous with

g,(P)g2(P)_ Lf' h_(T)h,( t -- T) dT= Lf'oh2(T)h,(,-- T)dT.p o

W _ will then have

p2
": L-'Ko _ -- K o _ coset,

p2 + _2

]'_1 [1 'C-i--_-CB--ie-_'sin('C:-B'`-t-*)]L-, 1 =_ ii C:> B a,

-1- C' ( e- ",' e-a,' _ ]al- X; X2j
if Cz < B 2,

where At, Am are roots of the equation pS + 2Bp + C2 = O°

Let us consider the first case Ca > B_ and, for facilitating the calcula-

tion, let us introduce the notations

_ A'o o_ Kok = l/Ci -- B 2. u -- _ , v = _ .
C2 6%

Then,

f:h,(T) ht(t--T)dT=

= I'o [u cos ca(1 -- I') -- v e-Br sin (kT Jr q)) cos ¢*(t -- T)] d T,

After performing higher integration, we can write l_

p2 1

K o to p2"--+¢o2 p2 + 2 Bp + C_ t
]j-- I

P i. _

q9650 q4086-0 q3



=--sin ot -- -- [cos • cos wt (I l + 17) -i-
6) 2

(is)
+ sin d) cos tot (Jl + J2) -4-cos (I) sin (at (J2 -- Jl) -4-

+ sin • sin tot (J1 --J2)],

where B _ _o_
I_ ---- B 2 + (_ e -B_sin 0)I t ____ _-m cos _h t '.4-B:+_ ' B 2+(o_

B e -Bt Sill to2 t ta2 to_, ,
-- e -mcGs(o 2t+B 2 , ¢o:,12 B 2+_._ B 2-_-o_ = °

B o, c -st sin tot t + B t

Jl-- B 2+_°e-stc°st°tt+ B _+(,)_ B z+_

6)2 B

J'z -- B 2 +B_ e- n*c°s °2 t + B_ + _ e_ ,t sht t,_2t + B2 + ta_

In that of the above two cases in which again C2 < B u, and using the nota-

tions
K o (o K o ¢o

_'t -_" ' Y2 -----

Al (AI --A2) A_ (At --A_)

we will have I[h2(T) lq(t_T)dT=

' [u coso (t - T) -;- _, e .x,r cos_ (t -- T) -- _'2e-'_'r coso (t -- 2')] dT.0

After integration, this yields

p_ I
]1/C 6_ .......

L-_ p_ + (a_ p_ + 2 Bp + C_ _--
P

_ (_h,_y.,.e ^,' _-,.'c.,,e-^,') +-_'_+ '°' (19)

+ +o,oo,o,+tsi o, +o,,,
,i

t

l( Ii. EFFECT OF CONTROL IN OBLIQUE GRADUAL ST_S
i

Ib

19 'a. Effect of Control cn the Collective g.ngle of Attack
50

51
_2 In this case, starting from a sunm_ry analysis of the control effects, w_
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s"

are taking into consideration the variation in the angular velocity A_, in the

_gle _0, and in the induced velocity _w as shown in Figs.i, 2, and 7.

I

i t
'- z_t--

Fig.7

Then, the natural frequency will have an approximately constant value of

the following form:

("Ore)

where _a_, is the average value, so that the equation of motion of the blade

can be written as follows:

_.+(ao+axt)_. +b '_. = I1o + B,t + B,t' + Bat 3, (20)

where

P_)o t_ r (1).(r) d)"
,o

a 0 _ )

--_ i It'
3[. -)- '''_ t_ _)., (r) dr

4 o 0

At ._. tp r(l>. (r) dr

--_ "R o

,u. + -_k0t;,o. (,.Id,

b = M.. ,,..,. .

31. + ":_fr °4 .. tT'@.(r)dr

o00o _oo 'I).()') t, r' dr
C;y.o ,

,B 0 _ )

,0
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, Pl'_( A¢oo ,, A0o Au',) A%'_q)2o o0 o + (o_-- ---(%- - --w o (r) tpr _dr
C,,-_ o _ At rat rat)) "

.at, + =P"_a" tg _. (r) dr
t .)o

C_,--_-Pfn(oO°--_+/'°: 2(% A°'" AO° A_°--A--w°lO.¢r)t.r'dr
Bs = , At z raft ) " ,

M. -_ r:.j_i _ t_,q_,,(r) dr
i .h

C: p__p_.A ,_, AO, tnO.(r)t,,r z dr2 Ata
B 3

"i7_ ¢'R

M, + -_-J_ot_o. (r)dr

Applying eq.(20) of the Laplace transforms under the limit conditions

_ (0) = o,
_, (o) = o,

we will have
I, b_. =bX,

I, ao_. = a0pX,
dX@

I. a_t,.. = --a lp-_
dp

I. _, = p2 X,

I. l;.t" = B---,
p"

and, after substitution, we will obtain the differential equation

(hi"

.... + vx=q, (21)
where dp

P= - cxxP + _2+¢xa '

+ p' J
1 ao b

_ -- _ 0_2_ _ 0(3_ _.
al ax ax

The solution of eq. (21) will then be

'i at P_

.' X = C p_,,c '" e',_ +

51 + IY',e C" p -

3-' ,, _._" aqk7 +-pa - + --_'-)1 dp" (22)
.)p ' e " o",*

15
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(h_expanding this expression in a series of exponential functions and

sun_gtnga determined number of terms, and considering that os is not an inte-

ger, we will obtain terms of the function X being a sum of terms of the

form k_pn (n differing from l, 2_ 3), so that this inversu trarsfor_tion re-

presents a sum cf terms of the form k_ F(1 - n) " From this result, a first

condition is obtained because of the fact that the amplitude of vibration tends

toward zero, which necessarily means that the function F also tends toward in-

finite, meaning that, simultaneously, as is a whole number.

Here, it can be demonstrated that the two terms, together with a cone-

siderable restriction in the terms of the exponential series, can be calculated

by inverse transformation with the aid of the Borel theorem°

b. Effect of Cyclic Variation on the Angle of Attack

Here and in 5he preceding case, the angular velocity remains conqtant

(_ = ab = const) while the amplitude of the cyclic variation depends linearly

on the time.

Thus, the angle of attack can be expressed by

0 = 0o + AO sin_t,

where AO-- AO o t.
At

The equation of motion of the blade will then be

_. + a _. + b[. = _o + q, (t), (23)

where the quantities a, b, and 8o in the above expression are the same as

given in eq.(12) where again q1(t) is expressed by

n, P .AOoIi_.(r)t,,,dr
qa(t)= _a"-_-_"A--_ tsin_t =

M. + 4 .)o

16 ,.%
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_3 AOof_ r 2C_ -At- q),(r)t_ dr t t
.... sin _t = qo -- sin _t.

_-t I_ F 2 _ 2_
3/. + 4 %(I)"(r) ,,,lr

A Laplace transformation, at the initial conditS.ons

and making use of eq.(23) will yield, as aS.sofollows from the previous case,

the imaginary function

p2
X = _o + 'Z B _o P +

p2 + i Bp + Cz pi + 2 Bp + C2

�+qo '
pi-- 2 Bp + C2 (p_, + _2)2 (pa + i Bp + C2)

where a = 2B and b = Cz.

The problem of deriving the inverse transformation can then be arbitrarily

expressed by the ultimate terms which can be written in the following form:

p-_ 1

p2 qO(pi + (o_)2 pi + i Bp + C2
--...d.

qo (p.,.+ _2)2 (p2 + 2 Bp + C2) p

making use of the Borel theorem.

Because of

P_ qo (sin _t + _, cos ¢_t)
L-' qo (p2 + _2)2 - 2--_

we will obtain the inverse transformation of the quantity

i

1
J

4, p2 "-F2 Bp + (:2
.t

,l:- in the above-discussed case, so that we will have, at Cs > B_,
i_)

5O

51

52

17
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p" 1
qo

L- _ (p2 + _2)z p" + 2 Bp + C2 = i' {U [sin(. Ii -- T) 4-

p ,o (25)
+ to (t--T)cos co(t--T) -- v e-"' sin (kT+¢) [sin _ (t-T) +

+ _ (t- T) cos _ (t-- T)]} dT,

where

qo qo
u =--

2(aC _" 2_Ck

In the case of C2 < B 2, we will have together with

= qo , ._ = qo ,
_1 2_A1 (A1 -- A:) 2 _,_A., (Al -- AJ

pa 1
qo

L- 1 (p_ + ¢o2)_ p2 + 2 Bp + C2_
P

--f t {t/[sin o)(t--T) 4- (o (t--T) cos co(t--T)]
.0

4- zC1c A,T [sin ¢o(t- T) 4- to (t- T) cos ¢o(t- T)] --

-- _,. e-A,r [sin co(t- T) + to (t--T) cos (,) (t-- T)]} dT.

As a general conclusion, it can be stated that the vibrations resulting

from the effect of the control are attenuated much more rapidly the greater

the damping of the natural 5-equency of the blade.

In the case of variations due to sudden application of oontrol or

gradual oblique application in the collective angle of attack, it is found

that special condition8 of dam@Lug of the blades must be sILtisfied.
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